首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   2篇
测绘学   1篇
大气科学   1篇
地球物理   37篇
地质学   31篇
海洋学   10篇
天文学   41篇
自然地理   6篇
  2021年   4篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2014年   6篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   8篇
  2009年   3篇
  2008年   2篇
  2007年   5篇
  2006年   4篇
  2005年   1篇
  2004年   6篇
  2003年   9篇
  2002年   3篇
  2001年   5篇
  2000年   4篇
  1999年   10篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1979年   4篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1969年   1篇
  1963年   1篇
  1948年   1篇
排序方式: 共有127条查询结果,搜索用时 125 毫秒
71.
A World Weather Research Programme (WWRP) project entitled the Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10) was developed to be associated with the Vancouver 2010 Olympic and Paralympic Winter Games conducted between 12 February and 21 March 2010. The SNOW-V10 international team augmented the instrumentation associated with the Winter Games and several new numerical weather forecasting and nowcasting models were added. Both the additional observational and model data were available to the forecasters in real time. This was an excellent opportunity to demonstrate existing capability in nowcasting and to develop better techniques for short term (0–6 h) nowcasts of winter weather in complex terrain. Better techniques to forecast visibility, low cloud, wind gusts, precipitation rate and type were evaluated. The weather during the games was exceptionally variable with many periods of low visibility, low ceilings and precipitation in the form of both snow and rain. The data collected should improve our understanding of many physical phenomena such as the diabatic effects due to melting snow, wind flow around and over terrain, diurnal flow reversal in valleys associated with daytime heating, and precipitation reductions and increases due to local terrain. Many studies related to these phenomena are described in the Special Issue on SNOW-V10 for which this paper was written. Numerical weather prediction and nowcast models have been evaluated against the unique observational data set now available. It is anticipated that the data set and the knowledge learned as a result of SNOW-V10 will become a resource for other World Meteorological Organization member states who are interested in improving forecasts of winter weather.  相似文献   
72.
Detailed numerical flow and radionuclide simulations are used to predict the flux of radionuclides from three underground nuclear tests located in the Climax granite stock on the Nevada Test Site. The numerical modeling approach consists of both a regional-scale and local-scale flow model. The regional-scale model incorporates conceptual model uncertainty through the inclusion of five models of hydrostratigraphy and five models describing recharge processes for a total of 25 hydrostratigraphic–recharge combinations. Uncertainty from each of the 25 models is propagated to the local-scale model through constant head boundary conditions that transfer hydraulic gradients and flow patterns from each of the model alternatives in the vicinity of the Climax stock, a fluid flux calibration target, and model weights that describe the plausibility of each conceptual model. The local-scale model utilizes an upscaled discrete fracture network methodology where fluid flow and radionuclides are restricted to an interconnected network of fracture zones mapped onto a continuum grid. Standard Monte Carlo techniques are used to generate 200 random fracture zone networks for each of the 25 conceptual models for a total of 5,000 local-scale flow and transport realizations. Parameters of the fracture zone networks are based on statistical analysis of site-specific fracture data, with the exclusion of fracture density, which was calibrated to match the amount of fluid flux simulated through the Climax stock by the regional-scale models. Radionuclide transport is simulated according to a random walk particle method that tracks particle trajectories through the fracture continuum flow fields according to advection, dispersion and diffusional mass exchange between fractures and matrix. The breakthrough of a conservative radionuclide with a long half-life is used to evaluate the influence of conceptual and parametric uncertainty on radionuclide mass flux estimates. The fluid flux calibration target was found to correlate with fracture density, and particle breakthroughs were generally found to increase with increases in fracture density. Boundary conditions extrapolated from the regional-scale model exerted a secondary influence on radionuclide breakthrough for models with equal fracture density. The incorporation of weights into radionuclide flux estimates resulted in both noise about the original (unweighted) mass flux curves and decreases in the variance and expected value of radionuclide mass flux.  相似文献   
73.
We present the results of the simultaneous XMM‐Newton and Chandra observations of the bright Seyfert 1.9 galaxy MCG–5‐23‐16, which is one of the best known examples of a relativistically broadened iron Kα line. We find that: a) the soft X‐ray emission is likely to be dominated by photoionized gas, b) the complex iron emission line is best modelled with a narrow and a broad component with a FWHM ∼44000 km/s. This latter component has an EW ∼50 eV and its profile is well described with an emission line mainly originating from the accretion disk a few tens of gravitational radii from the central black hole and viewed with an inclination angle ∼40°. We found evidence of a possible sporadic absorption line at ∼7.7 keV which, if associated with Fe XXVI Kα resonance absorption, is indicative of a possible high velocity (v ∼ 0.1c) outflow. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
74.
All groundwater pumped is balanced by removal of water somewhere, initially from storage in the aquifer and later from capture in the form of increase in recharge and decrease in discharge. Capture that results in a loss of water in streams, rivers, and wetlands now is a concern in many parts of the United States. Hydrologists commonly use analytical and numerical approaches to study temporal variations in sources of water to wells for select points of interest. Much can be learned about coupled surface/groundwater systems, however, by looking at the spatial distribution of theoretical capture for select times of interest. Development of maps of capture requires (1) a reasonably well-constructed transient or steady state model of an aquifer with head-dependent flow boundaries representing surface water features or evapotranspiration and (2) an automated procedure to run the model repeatedly and extract results, each time with a well in a different location. This paper presents new methods for simulating and mapping capture using three-dimensional groundwater flow models and presents examples from Arizona, Oregon, and Michigan.  相似文献   
75.
The X-Ray Telescope (XRT) onboard the Hinode satellite is an X-ray imager that observes the solar corona with the capability of diagnosing coronal temperatures from less than 1 MK to more than 10 MK. To make full use of this capability, Narukage et al. (Solar Phys. 269, 169, 2011) determined the thickness of each of the X-ray focal-plane analysis filters based on calibration measurements from the ground-based end-to-end test. However, in their paper, the calibration of the thicker filters for observations of active regions and flares, namely the med-Be, med-Al, thick-Al and thick-Be filters, was insufficient due to the insufficient X-ray flux used in the measurements. In this work, we recalibrate those thicker filters using quiescent active region data taken with multiple filters of XRT. On the basis of our updated calibration results, we present the revised coronal-temperature-diagnostic capability of XRT.  相似文献   
76.
Gerardo Herrera  Rosa María Mateos  Juan Carlos García-Davalillo  Gilles Grandjean  Eleftheria Poyiadji  Raluca Maftei  Tatiana-Constantina Filipciuc  Mateja Jemec Auflič  Jernej Jež  Laszlo Podolszki  Alessandro Trigila  Carla Iadanza  Hugo Raetzo  Arben Kociu  Maria Przyłucka  Marcin Kułak  Michael Sheehy  Xavier M. Pellicer  Charise McKeown  Graham Ryan  Veronika Kopačková  Michaela Frei  Dirk Kuhn  Reginald L. Hermanns  Niki Koulermou  Colby A. Smith  Mats Engdahl  Pere Buxó  Marta Gonzalez  Claire Dashwood  Helen Reeves  Francesca Cigna  Pavel Liščák  Peter Pauditš  Vidas Mikulėnas  Vedad Demir  Margus Raha  Lídia Quental  Cvjetko Sandić  Balazs Fusi  Odd Are Jensen 《Landslides》2018,15(2):359-379
Landslides are one of the most widespread geohazards in Europe, producing significant social and economic impacts. Rapid population growth in urban areas throughout many countries in Europe and extreme climatic scenarios can considerably increase landslide risk in the near future. Variability exists between European countries in both the statutory treatment of landslide risk and the use of official assessment guidelines. This suggests that a European Landslides Directive that provides a common legal framework for dealing with landslides is necessary. With this long-term goal in mind, this work analyzes the landslide databases from the Geological Surveys of Europe focusing on their interoperability and completeness. The same landslide classification could be used for the 849,543 landslide records from the Geological Surveys, from which 36% are slides, 10% are falls, 20% are flows, 11% are complex slides, and 24% either remain unclassified or correspond to another typology. Most of them are mapped with the same symbol at a scale of 1:25,000 or greater, providing the necessary information to elaborate European-scale susceptibility maps for each landslide type. A landslide density map was produced for the available records from the Geological Surveys (LANDEN map) showing, for the first time, 210,544 km2 landslide-prone areas and 23,681 administrative areas where the Geological Surveys from Europe have recorded landslides. The comparison of this map with the European landslide susceptibility map (ELSUS 1000 v1) is successful for most of the territory (69.7%) showing certain variability between countries. This comparison also permitted the identification of 0.98 Mkm2 (28.9%) of landslide-susceptible areas without records from the Geological Surveys, which have been used to evaluate the landslide database completeness. The estimated completeness of the landslide databases (LDBs) from the Geological Surveys is 17%, varying between 1 and 55%. This variability is due to the different landslide strategies adopted by each country. In some of them, landslide mapping is systematic; others only record damaging landslides, whereas in others, landslide maps are only available for certain regions or local areas. Moreover, in most of the countries, LDBs from the Geological Surveys co-exist with others owned by a variety of public institutions producing LDBs at variable scales and formats. Hence, a greater coordination effort should be made by all the institutions working in landslide mapping to increase data integration and harmonization.  相似文献   
77.
Geotechnical and Geological Engineering - Thermo-mechanical loading can occur in numerous engineering geological environments, from both natural and anthropogenic sources. Different minerals and...  相似文献   
78.
79.
A first‐order Taylor series method including direct derivative coding (DDC) is presented as a computationally efficient method for producing the probability distribution associated with calculated geotechnical performance. The probability distribution is employed in reliability analyses to calculate the probability of failure, valuable information that is not typically associated with deterministic analyses. The probability distribution also is used to identify important input parameters and to direct sampling efforts. Another approach to generate the probability distribution is the Monte Carlo (MC) method, however, Taylor series results generally are calculated in less time than the MC approach. One key to the implementation of the Taylor series approach is efficient approximation of the sensitivities required by the Taylor series calculation. DDC provides the technique to produce an efficient Taylor series algorithm. Directly coding the sensitivity analysis into the engineering model is accomplished by automatic and hand programming of derivatives. ADIFOR 2.0 was employed to automatically add derivatives to an existing engineering analysis model. For this paper a meshing program and 3D FEM for soil deformation is used to demonstrate the DDC approach. Although DDC requires a large up‐front programming effort, it is not site or data specific. Therefore, once the derivative programming has been performed, the numerical model can be applied to a wide variety of problems without additional user intervention. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号